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DYT1 dystonia is a neurological movement disorder that is caused by a loss-of-
function mutation in the DYT1/TOR1A gene, which encodes torsinA, a conserved
luminal ATPases-associated with various cellular activities (AAA+) protein. TorsinA
is required for the assembly of functional linker of nucleoskeleton and cytoskeleton
(LINC) complexes, and consequently the mechanical integration of the nucleus and
the cytoskeleton. Despite the potential implications of altered mechanobiology in
dystonia pathogenesis, the role of torsinA in regulating cellular mechanical phenotype,
or mechanotype, in DYT1 dystonia remains unknown. Here, we define the deformability
of mouse fibroblasts lacking functional torsinA as well as human fibroblasts isolated
from DYT1 dystonia patients. We find that the deletion of torsinA or the expression
of torsinA containing the DYT1 dystonia-causing 1E302/303 (1E) mutation results
in more deformable cells. We observe a similar increased deformability of mouse
fibroblasts that lack lamina-associated polypeptide 1 (LAP1), which interacts with and
stimulates the ATPase activity of torsinA in vitro, as well as with the absence of the
LINC complex proteins, Sad1/UNC-84 1 (SUN1) and SUN2, lamin A/C, or lamin B1.
Consistent with these findings, we also determine that DYT1 dystonia patient-derived
fibroblasts are more compliant than fibroblasts isolated from unafflicted individuals.
DYT1 dystonia patient-derived fibroblasts also exhibit increased nuclear strain and
decreased viability following mechanical stretch. Taken together, our results establish the
foundation for future mechanistic studies of the role of cellular mechanotype and LINC-
dependent nuclear-cytoskeletal coupling in regulating cell survival following exposure to
mechanical stresses.

Keywords: torsinA, LINC complex, mechanotype, cell mechanical properties, nuclear envelope, lamins

Abbreviations: AAA+, ATPase-associated with various cellular activities; d, cell diameter; Ea, apparent cell elastic modulus;
C, circularity; LAP1, lamina-associated polypeptide 1; LULL1, luminal domain-like LAP1; LINC, linkers of nucleoskeleton
and cytoskeleton; MEF, mouse embryonic fibroblast; Nesprin, Nuclear envelope spectrin repeat; NS, Not significant; PDMS,
Polydimethylsiloxane; PMF, parallel microfiltration; q-DC, quantitative deformability cytometry; SUN, Sad1/UNC-84; TAN,
transmembrane actin-associated nuclear; TT, transit time; WT, wild type.
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INTRODUCTION

Dystonia is a “hyperkinetic” neurological movement disorder,
which is the third most common movement disorder worldwide
behind essential tremor and Parkinson’s disease (Fahn, 1988;
Geyer and Bressman, 2006; Defazio et al., 2007). Dystonia is
characterized by involuntary sustained or intermittent muscle
contractions resulting in abnormal repetitive movements and/or
postures (Fahn, 1988; Albanese et al., 2013). While multiple
treatment options are available for managing dystonia—such
as botulinum toxin injection, oral medications, and deep brain
stimulation—no curative therapies exist (Albanese et al., 2019).
If we could fully define the mechanisms of dystonia pathogenesis,
this would enable the development of effective targeted treatment
strategies for dystonia patients.

Dystonia can be acquired as a result of traumatic brain
injury, central nervous system infection, or environmental toxins
(Albanese et al., 2013, 2019). This neurological disorder can also
be inherited: the most prevalent and severe inherited dystonia
(Weisheit et al., 2018), DYT1 dystonia, is caused by a loss-of-
function mutation in the DYT1/TOR1A gene that deletes a single
glutamic acid residue (1E302/303, or 1E) from the encoded
torsinA protein (Ozelius et al., 1997). TorsinA is an AAA+
protein, which resides within the lumen of the endoplasmic
reticulum lumen and the contiguous perinuclear space of the
nuclear envelope (Goodchild and Dauer, 2004; Naismith et al.,
2004). AAA+ proteins typically function as ATP-dependent
molecular chaperones that structurally remodel their protein
substrates (Hanson and Whiteheart, 2005). While the substrate(s)
remodeled by torsinA are unknown, torsinA is thought to
function within the nuclear envelope where its ATPase activity
is stimulated by its membrane-spanning co-factors: lamina-
associated polypeptide 1 (LAP1) and luminal domain-like LAP1
(LULL1) (Laudermilch et al., 2016). While the 1E mutation
impairs the ability of torsinA to interact with or be stimulated by
either LAP1 or LULL1 (Naismith et al., 2009; Zhao et al., 2013), a
mechanistic understanding of how the 1E mutation drives DYT1
dystonia pathogenesis at the cellular level remains unclear.

We recently identified torsinA and LAP1 as mediators of the
assembly of functional linker of nucleoskeleton and cytoskeleton
(LINC complexes) (Saunders and Luxton, 2016; Saunders et al.,
2017), which are evolutionarily conserved nuclear envelope-
spanning molecular bridges that mechanically integrate the
nucleus and the cytoskeleton (Ansardamavandi et al., 2016).
LINC complexes are composed of the outer nuclear membrane
nuclear envelope spectrin repeat (nesprin) proteins and the inner
nuclear membrane Sad1/UNC-84 (SUN) proteins. Nesprins
interact with the cytoskeleton in the cytoplasm and SUN
proteins in the perinuclear space, whereas SUN proteins interact
with A-type lamins and chromatin-binding proteins in the
nucleoplasm (Crisp et al., 2006; Wilson and Berk, 2010; Chang
et al., 2015b). Our previous work demonstrated that torsinA and
LAP1 are required for the assembly of transmembrane actin–
associated nuclear (TAN) lines (Saunders et al., 2017), which are
linear arrays of LINC complexes composed of the actin-binding
nesprin-2Giant (nesprin-2G) and SUN2 that harness the forces
generated by the retrograde flow of perinuclear actin cables to
move the nucleus toward the rear of migrating fibroblasts and

myoblasts; this is required for efficient directional migration
(Luxton et al., 2010, 2011; Chang et al., 2015a). Consistent with
these findings, DYT1 dystonia patient-derived fibroblasts and
fibroblasts isolated from mouse models of DYT1 dystonia exhibit
reduced motility in vitro (Nery et al., 2008, 2014). Moreover,
the migration of torsinA-null neurons in the dorsal forebrain of
torsinA-null mouse embryos show impaired migration in vivo
(McCarthy et al., 2012). Since intracellular force generation
is critical for cell motility, and regulated by shared mediators
of mechanotype (Rodriguez et al., 2003; Herrmann et al.,
2007; Dittmer and Misteli, 2011; Chung et al., 2013; Chang
et al., 2015b; Xavier et al., 2016; Fritz-Laylin et al., 2017), these
results suggest that DYT1 dystonia may be characterized by
defective mechanobiology.

Here, we test the hypothesis that torsinA regulates cellular
mechanical phenotype, or mechanotype, which describes
how cells deform in response to mechanical stresses. Cellular
mechanotype is critical for the process of mechanotransduction,
whereby cells translate mechanical stimuli from their
environment into biochemical signals and altered gene
expression (Franze et al., 2013). The ability of cells to withstand
physical forces is also crucial for their survival (Hsieh and
Nguyen, 2005). For example, the external stresses of traumatic
brain injury result in cell death (Raghupathi, 2004; Stoica and
Faden, 2010; Hiebert et al., 2015; Ganos et al., 2016). Damage to
cells can likewise occur during their migration through narrow
constrictions, including nuclear rupture, DNA damage, and cell
death (Harada et al., 2014; Denais et al., 2016; Raab et al., 2016;
Irianto et al., 2017).

The damaging effects of such large cellular deformations
depend on levels of A-type nuclear lamins, which are critical
regulators of nuclear and cellular mechanotype (Lammerding
et al., 2004; Swift et al., 2013; Stephens et al., 2017). The depletion
of other proteins that associate with nuclear lamins, such as
the inner nuclear membrane protein emerin, similarly result in
reduced mechanical stability of the nuclear envelope (Rowat et al.,
2006; Reis-Sobreiro et al., 2018) as well as increased nuclear
strain following mechanical stretch (Lammerding et al., 2005).
The nuclear lamina also interacts with chromatin, which can
further contribute to the mechanical properties of the nucleus
(Pajerowski et al., 2007; Chalut et al., 2012; Schreiner et al.,
2015; Stephens et al., 2017). In addition, nuclear lamins associate
with the LINC complex, which mediates the transmission of
physical forces generated by the cytoskeleton across the nuclear
envelope and into the nucleoplasm (Stewart-Hutchinson et al.,
2008; Lombardi et al., 2011; Spagnol and Dahl, 2014). Given
that torsinA is required for the assembly of both actin- and
intermediate filament-binding LINC complexes in fibroblasts
(Hewett et al., 2006; Nery et al., 2008, 2014; Vander Heyden et al.,
2009; Saunders et al., 2017), we speculated that DYT1 dystonia
patient-derived fibroblasts may exhibit altered mechanotype. We
chose to study the effect of the loss of torsinA function on the
mechanotype of fibroblasts for three main reasons: (1) fibroblasts
have been used to successfully model human neurological
disorders, including dystonia (Connolly, 1998; Hewett et al.,
2006; Auburger et al., 2012; Burbulla and Kruger, 2012; Wray
et al., 2012; Nery et al., 2014); (2) the molecular mediators of
mechanotype are typically conserved across cell types (Rodriguez
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et al., 2003; Herrmann et al., 2007; Dittmer and Misteli, 2011;
Chung et al., 2013; Chang et al., 2015b; Xavier et al., 2016; Fritz-
Laylin et al., 2017), thus findings in fibroblasts may be extended
to neurons; and (3) dermal fibroblasts can be easily isolated from
DYT1 dystonia patients (Nery et al., 2014).

Here, we show that the deformability of human and mouse
fibroblasts is altered due to the expression of torsinA containing
the DYT1 dystonia-causing 1E mutation (torsinA1E), the
absence of torsinA, the deletion of LAP1, or the disruption of
functional LINC complexes. We find that fibroblasts isolated
from DYT1 dystonia patients are more deformable than normal
human fibroblasts. Interestingly we also observe that DYT1
dystonia patient-derived fibroblasts exhibit nuclei with greater
strain and decreased viability following mechanical stretching of
their substrates. Collectively these results establish the roles of
functional torsinA and LINC complexes in regulating cellular
deformability. Our findings should guide future studies to
better understand the pathophysiology of diseases ranging from
dystonia to cancer, which are associated with mutations in the
genes that encode torsin, LAP1 and/or LINC complex proteins
(Luxton and Starr, 2014; Sewry and Goebel, 2014; Rebelo et al.,
2015; Ghaoui et al., 2016; Janin et al., 2017; Kariminejad et al.,
2017; Reichert et al., 2017).

MATERIALS AND METHODS

DNA Constructs
The retroviral packaging cDNA constructs that were used to
generate the NIH3T3 fibroblast cell lines that stably express
EGFP-tagged torsinA constructs were created as follows:
PCR was used to amplify the cDNA sequences encoding wild
type (WT) or mutant versions of torsinA containing EGFP
inserted after its signal sequence (SS) using the previously
described SS-EGFP-torsinAWT, SS-EGFP-torsinAE171Q,
or SS-EGFP-torsinA1E constructs (Goodchild and Dauer,
2004; Saunders et al., 2017) as templates and the primers
SS-EGFP-F (5′-GGGCGCCTCGAGATGAAGCTGGGCCGGG-
3′) and SS-EGFP-torsinA-R (5′-GCGCCCGAATTCTCAATC
ATCGTAGTAATAATCTAACTTGGTG-3′), which contain 5′
XhoI and EcoRI restriction enzyme (RE) cut sites, respectively.
Each PCR product was purified and digested alongside the
retroviral packaging vector pLPCX (Takara Bio USA, Inc.,
Mountain View, CA) with XhoI and EcoRI. The digested
PCR products and pLPCX vectors were then gel purified,
ligated together, and confirmed by sequencing performed at
the University of Minnesota Genomics Center. Phusion DNA
polymerase, REs, and T4 DNA ligase were purchased from
New England Biolabs (NEB, Ipswich, MA). The Wizard SV Gel
and PCR Clean-Up System used to purify the PCR products
and digested DNA was purchased from Promega. The GeneJet
Plasmid Midiprep Kit, which was used to purify each construct,
was purchased from ThermoFisher Scientific (Waltham, MA,
United States).

Cells
Parental NIH3T3 fibroblasts were cultured in L-glutamine-,
glucose-, and sodium pyruvate-containing Dulbecco’s modified

Eagle’s media (DMEM) (Thermo Fisher Scientific, Waltham, MA,
United States) supplemented with 10% bovine calf serum (BCS)
(Gemini Bio-Products, West Sacramento, CA, United States).
NIH3T3 fibroblasts stably expressing WT, or mutant (E171Q or
1E) versions of torsinA were created as follows. The pLPCX
vectors encoding each SS-EGFP-tagged torsinA construct were
separately transfected along with the pVSV-G (Takara Bio
USA, Inc.) construct, which encodes the vesicular stomatitis
virus G envelope protein into the gp293 retroviral packaging
cell line (Takara Bio USA, Inc.). The subsequent isolation of
the pseudotyped retroviral particles produced by the gp293
cells was performed as recommended by the manufacturer.
NIH3T3 fibroblasts were transduced with purified pseudotyped
retroviruses and selected with 2 µg/mL puromycin (Thermo
Fisher Scientific). Individual clones of the resultant cell lines were
isolated using limiting dilution and maintained with 2 µg/mL
of puromycin.

The Tor1a+/+, Tor1a−/−, Tor1aip1+/+, Tor1aip1−/−,
LMNA+/+, LMNA−/−, LMNB1+/+, and LMNB1−/− mouse
embryonic fibroblasts (MEFs) used in this study were previously
described (Kim et al., 2010; Jung et al., 2014; Saunders et al.,
2017). The Tor1a+/1E and Tor1a1E/1E MEFs used here were
a kind gift from Dr. William T. Dauer, who isolated them from
his previously described 1E knock-in mice (Goodchild et al.,
2005). The SUN1/2+/+, SUN1/2−/−, and SUN2−/− MEFs used
here were a kind gift from Dr. Brian Burke, who isolated them
from previously described mice (Lei et al., 2009). All the MEFs
used in this study were grown in DMEM supplemented with 15%
BCS and 1% penicillin, and streptomycin. Human fibroblasts
(GM00023, GM00024, GM02912, GM03211, GM03221,
and GM02304) were purchased from the Coriell Institute
and cultured following vendor’s instructions (Camden, NJ,
United States): GM00023, GM03211, GM03221, and GM02304
were grown in DMEM containing 15% fetal bovine serum (FBS)
(Gemini Bio-Products, West Sacramento, CA, United States).
GM00024 were grown in DMEM supplemented with 10% FBS.
GM02912 were grown in 20% FBS-containing Ham’s F12 media
supplemented with 2 mM L-glutamine (Sigma-Aldrich, St. Louis,
MO, United States). All cells were grown at 37◦C with 5% CO2.

Parallel Microfiltration (PMF)
Prior to filtration measurements, cells were washed with 1×
DNase-, RNase- and Protease-free phosphate-buffered saline
purchased from Mediatech (Manassas, VA, United States),
treated with trypsin (VWR, Visalia, CA, United States), and
resuspended in fresh medium to a density of 0.5 × 106 cells/mL.
Cell suspensions were maintained for 30 min after harvesting
to enable cells to round following their detachment from the
substrate; the rounding of detached cells typically occurs over
timescales of ∼min (Shamik and Kumar, 2009). Prior to each
filtration measurement, cell suspensions were passed through a
35 µm cell strainer (BD Falcon, San Jose, CA, United States).
Next, 350 µL of each cell suspension was loaded into each
well of a 96-well loading plate (Greiner BioOne, Monroe, NC,
United States). The number and size distribution of cells in each
well were quantified using an automated cell counter (TC20,
BioRad Laboratories, Hercules, CA, United States). Finally,
a defined magnitude of air pressure which was monitored
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using a 0–100 kPa pressure gauge (Noshok Inc., Berea, OH,
United States), was applied to the 96-well plate outfitted with a
custom pressure chamber for 40 or 50 s (Qi et al., 2015; Gill et al.,
2017). To quantify retention volumes following filtration, we
measured the absorbance at 560 nm of the phenol red-containing
cell medium using a plate reader (Infinite M1000, Tecan Group
Ltd., Männedorf, Switzerland).

Quantitative Deformability Cytometry
(q-DC)
Standard soft lithography methods were used to fabricate
the microfluidic devices for q-DC experiments. Briefly, a
10:1 w/w base to crosslinker ratio of polydimethylsiloxane
(PDMS) was poured onto a previously described master wafer
(Nyberg et al., 2016). The device was subsequently bonded to a
No. 1.5 glass coverslip (Thermo Fisher Scientific) using plasma
treatment (Plasma Etch, Carson City, NV, United States). Within
24 h of device fabrication, suspensions of 2 × 106 cells/mL
were driven through constrictions of 9 µm (width) × 10 µm
(height) by applying 55 kPa of air pressure across the device.
We captured images of cell shape during transit through
the 9 µm gaps on the millisecond timescale using a CMOS
camera with a capture rate of 1600 frames/s (Vision Research,
Wayne, NJ, United States) mounted on an inverted Axiovert
microscope (Zeiss, Oberkochen, Germany) equipped with a
korr Ph2 20x/0.4NA LD Achroplan objective (Zeiss) and light
source (Osram Halogen Optic Lamp 100 W, 12 V). We used
custom MATLAB (MathWorks, Natick, MA, United States)
code1 to analyze the time-dependent shape and position changes
of individual cells (Nyberg et al., 2016). To determine the
mechanical stresses applied to individual cells, we used agarose
calibration particles that were fabricated using oil-in-water
emulsions as previously described (Nyberg et al., 2017). Stress-
strain curves were obtained for single cells and a power-law
rheology model was subsequently fitted to the data to compute
cellular elastic modulus.

Epifluorescence Microscopy
To image cell and nuclear morphology, cells grown on No. 1.5
coverslips were labeled with 5 µM Calcein-AM and 0.2 µg/mL
Hoechst 33342 (ThermoFisher Scientific). For cell viability
measurements, cells were stained with 50 µg/mL propidium
iodide (Thermo Fisher Scientific). Images of fluorescently labeled
cells were acquired using a Zeiss Axio Observer A.1 microscope
equipped with a 10x/0.3 NA EC Plan-Neofluar Ph1 M27
objective, a 20×/0.8 NA Plan-Apochromat M27 objective, a HBO
103W/2 mercury vapor short-arc lamp light source, a BP 470/20
excitation filter, a BP 505–530 emission filter, and a FT 495
beam splitter. ImageJ (Bethesda, MA, United States) was used
to quantify cell and nuclear size and shape parameters from the
acquired images.

Cell Stretching
To subject cells to external mechanical stresses, we used a custom-
built cell stretching apparatus (Kim et al., 2018). We prepared

1https://github.com/knybe/RowatLab-DC-Analysis

elastic PDMS membranes as previously described (Kim et al.,
2018). Cells were resuspended in tissue culture media at a
concentration of 5 × 105 cells/mL and then added to individual
PDMS strips, which were incubated for 24 h at 37◦C with
5% CO2. To quantify nuclear strain, the membranes with cells
adhered were stretched by 2 mm (5% of the total length of the
membrane) while submerged in cell culture media for 5 min
prior to imaging. To determine the effects of repetitive stretch
on cell adhesion and viability, membranes were stretched by
2 mm at 0.5 Hz for 24 h at 37◦C. After 24 h, membrane-adhered
cells were stained with fluorescent dyes and imaged as described
above. To quantify the number of cells attached to the membranes
after stretching, we prepared lysates of the adherent cells using
a solution of 0.1 N NaOH (Sigma-Aldrich) and measured the
total protein content of the lysates using the detergent compatible
(DC) protein assay kit (BioRad Laboratories).

Statistical Methods
To determine the statistical significance of data that exhibited
non-parametric distributions (TT, Ea, and cell size) we used the
Mann–Whitney U-test. To determine the statistical significance
of data with unequal variances (nuclear size, shape, and strain)
we used the Welch’s t-test. We used Cohen’s d test to determine
the effect size for differences observed in nuclear strain. To
determine the statistical differences in the variability of nuclear
shape across samples, we used Levene’s test. All other results
were analyzed using the Student’s t-test method to determine
statistical significance.

RESULTS

TorsinA and LAP1 Contribute to
Fibroblast Deformability
To begin to determine if DYT1 dystonia is associated with altered
cellular deformability, we performed our previously described
PMF assay (Qi et al., 2015; Gill et al., 2017) on NIH3T3 fibroblasts
with impaired torsinA function. In PMF, cell suspensions are
filtered through porous membranes on the timescale of seconds
by applying a defined magnitude of air pressure. Cells that
occlude the micron-scale pores due to their stiffness and/or size
block the fluid flow, reducing filtrate volume, and increasing the
volume of fluid that is retained in the top well, which we report
as % retention (Figure 1A). While the PMF setup is similar to
a transwell migration assay where cells actively migrate through
confined spaces, the timescale for cell migration is∼hours (Justus
et al., 2014; Paul et al., 2017), whereas the timescale of filtration
measurements is ∼seconds (Qi et al., 2015); therefore PMF
provides a measurement of the ability of cells to passively deform
through micron-scale pores (Qi et al., 2015; Kim et al., 2016;
Nyberg et al., 2018; Reis-Sobreiro et al., 2018).

To manipulate torsinA function, we generated lentivirus-
transduced NIH3T3 fibroblasts that stably express previously
described cDNA constructs encoding WT or mutant (E171Q
or 1E) torsinA (Saunders et al., 2017). The E171Q mutation
inactivates the Walker B site in the AAA+ domain of torsinA,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2019 | Volume 7 | Article 103

https://github.com/knybe/RowatLab-DC-Analysis
https://www.frontiersin.org/journals/cell-and-developmental-biology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-07-00103 June 24, 2019 Time: 15:15 # 5

Gill et al. DYT1 Fibroblasts Have Reduced Deformability

FIGURE 1 | Fibroblasts lacking functional torsinA or LAP1 have increased deformability relative to controls. (A) Schematic illustration of PMF. Less deformable cells
tend to occlude pores, thereby blocking fluid flow and resulting in an increased volume of fluid that is retained above the membrane. The retained fluid volume
relative to the initial loaded volume is % retention. (B) PMF measurements of NIH3T3 fibroblasts expressing the indicated SS-EGFP-tagged torsinA constructs. (D,F)
PMF measurements of the indicated MEF lines. PMF conditions: 10 µm pore size, 2.1 kPa for 50 s. Each data point represents the mean ± standard deviation (SD).
Statistical significance was determined using Student’s t-test. (C,E,G) Cell size data. Boxplots show 25 and 75th percentiles; line shows median; and whiskers
denote 10 and 90th percentiles. All data were obtained from three independent experiments. Statistical significance was determined using Mann-Whitney U-test.
∗∗∗p < 0.001; not significant (NS) p > 0.05.

which prevents torsinA from hydrolyzing ATP. Since neither SS-
EGFP-torsinAE171Q nor SS-EGFP-torsinA1E were able to rescue
the rearward nuclear positioning and centrosome orientation
defects observed in MEFs isolated from torsinA-knockout
(Tor1a−/−) mice (Goodchild et al., 2005; Saunders et al., 2017),
we rationalized that these constructs would act as dominant
negative inhibitors of torsinA function in NIH3T3 fibroblasts.
We found that NIH3T3 fibroblasts expressing either SS-EGFP-
torsinAE171Q or SS-EGFP-torsinA1E exhibited significantly
lower % retention than parental non-transduced or SS-EGFP-
torsinAWT transduced NIH3T3 fibroblasts (Figure 1B). While
cell size can impact filtration (Qi et al., 2015; Nyberg et al., 2017),
we observed no significant differences in size distributions across
these cell lines (Figure 1C), suggesting that their altered filtration
is due to differences in cellular deformability. These data indicate
that torsinA regulates the deformability of NIH3T3 fibroblasts.

To further investigate the relationship between torsinA
function and cellular deformability, we next performed PMF
experiments on previously characterized Tor1a+/+ and
Tor1a−/− MEFs (Saunders et al., 2017). We found that %
retention of the Tor1a+/+ MEFs was significantly larger than
% retention of the Tor1a−/− MEFs (Figure 1D). Consistent
with these findings, we observed that MEFs isolated from
heterozygous (Tor1a+/1E) or homozygous (Tor1a1E/1E)
1E-knock-in mice (Goodchild et al., 2005) had a significantly
lower % retention than Tor1a+/+ MEFs (Figure 1D). Moreover,
% retention measured for MEFs derived from LAP1-knockout

(Tor1aip1−/−) mice was also significantly lower than %
retention measured for control Tor1aip1+/+ MEFs (Figure 1F).
We confirmed that these observed changes in % retention
were not due to significant differences in cell size distributions
(Figures 1E,G). Because the interaction between torsinA and
the luminal domain of LAP1 stimulates its ATPase activity
in vitro (Zhao et al., 2013) and the 1E mutation impairs the
ability of torsinA to interact with LAP1 (Naismith et al., 2009),
these results suggest that the interaction between torsinA and
LAP1 may contribute to fibroblast deformability. In addition,
LAP1 is critical for nuclear envelope structure (Kim et al.,
2010; Santos et al., 2015) and interacts with nuclear lamins
(Foisner and Gerace, 1993; Serrano et al., 2016), which are major
determinants of cellular mechanotype (Houben et al., 2007).
Thus, the impaired interaction between torsinA and LAP1
caused by the 1E mutation may also contribute to the increased
deformability of Tor1aip1−/− MEFs.

The LINC Complex and Nuclear Lamins
Mediate Cellular Deformability
We previously showed that torsinA and LAP1 are both required
for nuclear-cytoskeletal coupling through SUN2-containing
LINC complexes (Saunders et al., 2017). Thus, we next asked
whether or not MEFs isolated from SUN2-knockout (SUN2−/−)
mice (Lei et al., 2009) exhibited similar decreased filtration as the
Tor1a−/−, Tor1a+/1E, Tor1a1E/1E, and Tor1aip1−/−MEFs. We
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found that SUN2−/− MEFs had reduced % retention relative to
control (SUN1/2+/+) MEFs (Figure 2A). Since torsinA has also
been proposed to interact with and regulate SUN1-containing
LINC complexes (Jungwirth et al., 2011; Weisheit et al., 2018;
Chalfant et al., 2019), we also performed PMF on MEFs derived
from SUN1/2-double knockout (SUN1/2−/−) mice (Lei et al.,
2009) and found that they had reduced % retention relative
to both SUN2−/− and SUN1/2+/+ MEFs (Figure 2A). These
changes in % retention were not due to significant differences in
cell size distributions (Figure 2B).

To determine how perturbations of the LINC complex
compare to depletion of an established regulator of nuclear
and cellular mechanotype, we next investigated the effects of
A-type lamins (Lammerding et al., 2004; Swift et al., 2013);
these nuclear-specific intermediate filament proteins directly
interact with LAP1 (Foisner and Gerace, 1993; Serrano et al.,
2016) as well as SUN1 and SUN2 (Chang et al., 2015a).
We found that MEFs isolated from lamin A/C-knock-out
(LMNA−/−) mice exhibited reduced % retention relative to
MEFs isolated from control mice (LMNA+/+) (Figure 2C).
The increased deformability of the LMNA−/− MEFs that we
observed is consistent with previous reports from our laboratory
and others, which show that A-type lamins determine the
ability of cells to deform through micron-scale pores, both
during passive deformation driven by applied pressure (timescale
∼ seconds) and active migration (timescale ∼ hours) (Rowat
et al., 2013; Harada et al., 2014). In addition to A-type nuclear
lamins, many cells types express the B-type nuclear lamins, lamin
B1 and lamin B2 (Dittmer and Misteli, 2011; Reddy and Comai,
2016). Lamin B1 interacts with SUN1 (Nishioka et al., 2016) and
LAP1 (Maison et al., 1997) and is required for proper nuclear-
cytoskeletal coupling (Ji et al., 2007). We found that MEFs
isolated from lamin-B1-knockout mice (LMNB1−/−) (Vergnes
et al., 2004) had reduced % retention compared to MEFs isolated
from control mice (LMNB1+/+) (Figure 2C), suggesting that
lamin B1 also contributes to cellular deformability. These findings
are in agreement with previous findings that identify lamin
B1 as a determinant of nuclear shape and stiffness (Coffinier
et al., 2011; Ferrera et al., 2014). While we observed differences
in cell size distributions between LMNA−/− and LMNA+/+

MEFs as well as between LMNB1−/− and LMNB1+/+ MEFs,
we did not observe that cells with larger median cell size had
increased % retention (Figures 2C,D). Taken together, these
results suggest that nuclear lamins, torsinA, LAP1, and LINC
complexes are important mediators of cellular deformability.
These results are consistent with a model where cells are more
deformable when the mechanical integration of the nucleus and
the cytoskeleton is perturbed.

DYT1 Dystonia Patient-Derived
Fibroblasts Are More Deformable Than
Control Fibroblasts
Having established that the DYT1 dystonia-causing 1E mutation
in torsinA makes cells more deformable and that torsinA,
LINC complexes, and LINC complex-associated proteins are
important determinants of cellular deformability, we next tested
if fibroblasts isolated from DYT1 dystonia patients display defects
in cellular mechanotype. We performed PMF on a panel of
age-matched human fibroblasts isolated from normal individuals
(GM00023, GM00024, and GM02912) and DYT1 dystonia
patients (GM03211, GM03221, and GM02304). We found that
DYT1 dystonia patient-derived fibroblasts had consistently lower
% retention compared to fibroblasts isolated from unafflicted
controls (Figure 3A). While there were some differences in cell
size distributions across the DYT1 dystonia-derived fibroblast
lines (Figure 3B), we consistently found that they exhibited lower
% retention than the control fibroblasts. Notably the GM02304
line, which had the largest median cell size, exhibited the lowest
% retention of all patient-derived fibroblasts (Figures 3A,B).
To validate the effects of decreased cell deformability—or
increased % retention—in our PMF assay, we determined the
effects of paclitaxel treatment on the % retention of DYT1
dystonia patient-derived fibroblasts (Figures 3A,B). Previously,
we identified the microtubule-stabilizing drug paclitaxel as a
treatment that increases the % retention, or decreases cellular
deformability, of human leukemia and ovarian cancer cells
using PMF (Qi et al., 2015; Gill et al., 2019). Paclitaxel treatment
recapitulates the decreased deformability that results from
lamin A over-expression, as shown by the similar increased

FIGURE 2 | Fibroblasts lacking LINC complexes (SUN1/2, SUN2), A-type lamins (LMNA), or lamin B1 (LMNB1) have increased deformability relative to controls. PMF
measurements of the indicated MEF lines. (A) PMF conditions: 10 µm pore membrane, 2.1 kPa for 50 s. (C) PMF conditions: 10 µm pore membrane, 2.1 kPa for
40 s. Each data point represents the mean ± SD. Statistical significance was determined using Student’s t-test. (B,D) Cell size data. Boxplots show 25 and 75th
percentiles; line shows median; whiskers denote 10 and 90th percentiles. Statistical significance was determined using Mann–Whitney U-test. All data were obtained
from three independent experiments. ∗∗∗p < 0.001; ∗∗p < 0.01; not significant (NS) p > 0.05.
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FIGURE 3 | DYT1 dystonia patient-derived fibroblasts have increased deformability compared to controls. (A) PMF measurements of normal and DYT1 dystonia
patient-derived fibroblast lines. Paclitaxel (Pac) treatment for 24 h prior to filtration. PMF conditions: 10 µm pore membrane, 1.4 kPa for 50 s. Each data point
represents the mean ± SD. Statistical significance was determined using Student’s t-test. (B) Cell size data. Boxplots show 25 and 75th percentiles; line shows
median; whiskers denote 10 and 90th percentiles. (C,E) Density scatter plots for TT and Ea measurements determined by q-DC. Each dot represents a single cell.
N > 190 per sample. (D,F) TT and Ea measurement boxplots show 25 and 75th percentiles; line shows median; whiskers denote 10 and 90th percentiles. Statistical
significance was determined using Student’s t-test. All data were obtained from three independent experiments. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; and not
significant (NS) p > 0.05.

timescales required for cells to deform through narrow gaps
(Rowat et al., 2013; Lautscham et al., 2015). Our findings
indicate that stabilizing microtubules in DYT1 dystonia patient-
derived fibroblasts with paclitaxel increases their % retention,
consistent with a decreased whole cell deformability (Figure 3A);
these findings contrast the increased cellular deformability
we observe with perturbations of torsinA, LINC complex
proteins, and nuclear lamins. Taken together, these findings
suggest that fibroblasts isolated from DYT1 dystonia patients
are more deformable than control fibroblasts, as assessed by
their ability to deform through micron-scale pores on the
timescale of seconds.

To validate the more compliant mechanotype of the
DYT1 dystonia patient-derived fibroblasts (GM02304) versus
control cells (GM00024), we used q-DC (Nyberg et al.,
2017). q-DC enables single-cell measurements of transit time
(TT), which is the time that it takes a cell to transit into
the micron-scale constriction of a microfluidic device in
response to applied pressure, and apparent elastic modulus
(Ea). We found that fibroblasts isolated from DYT1 dystonia
patients had reduced median TT relative to control fibroblasts
(median TTGM02304 = 16.2 ms versus TTGM00024 = 24.4 ms,
p = 1.5 × 10−2) (Figures 3C,D). Since TT tends to
be shorter for more compliant cells with reduced elastic
modulus (Nyberg et al., 2017), these findings corroborate the
increased deformability of DYT1 patient-derived fibroblasts that
we observed using PMF. q-DC measurements can also be
impacted by cell size, but we found no significant correlations
of q-DC measurements with cell diameter (d) by linear

regression analysis (Pearson’s rGM02304_TT vs. d = 0.0, Pearson’s
rGM00024_TT vs. d = −0.1), suggesting that these observations
of the altered DYT1 dystonia-derived fibroblast deformability
do not depend on cell size. Using power law rheology to
extract measurements of Ea (Nyberg et al., 2017), we found
that DYT1 dystonia patient-derived fibroblasts have reduced
median Ea compared to controls, although the reduction
was not statistically significant (Figures 3E,F). Collectively,
our PMF and q-DC measurements indicate that DYT1
dystonia patient-derived fibroblasts are more deformable than
control fibroblasts.

DYT1 Dystonia Patient-Derived
Fibroblasts Display Altered Nuclear
Morphology
Cellular and nuclear shape reflect a balance between cell-
matrix adhesions, cellular force generation, mechanical stability
of the cellular cortex and nuclear envelope, as well as nuclear-
cytoskeletal connectivity (Dahl et al., 2004, 2008; Rowat
et al., 2008; Murrell et al., 2015). Since the expression of
torsinA1E alters the mechanical integration of the nucleus
and the cytoskeleton via the LINC complex (Nery et al.,
2008; Jungwirth et al., 2011; Saunders et al., 2017), we
hypothesized that fibroblasts isolated from DYT1 dystonia
patients may have altered nuclear size and shape. To characterize
these features, we performed quantitative image analysis of
cells with fluorescently labeled cytoplasm (Calcein AM) and
nuclei (Hoechst 33342) using epifluorescence microscopy.
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Since intracellular forces pulling on the nucleus in adhered
cells can result in an increased nuclear area (Iyer et al.,
2012), we first measured the projected area of nuclei in
these cells, but found no significant differences between
fibroblasts isolated from DYT1 dystonia patients (GM03211,
GM03221, and GM02304) or controls (GM00023 and GM00024)
(Supplementary Figure 1A). We also found no statistically
significant differences between the cellular area of adhered DYT1
dystonia patient-derived and normal fibroblasts (Supplementary
Figure 1B). Cell-to-nuclear size ratio was also similar across cell
types, indicating that nuclear and cellular size scale similarly
in DYT1 dystonia patient-derived and control fibroblasts
(Supplementary Figure 1C).

We next investigated nuclear shape, which is impacted by
cytoskeletal-generated forces as well as the inherent mechanical
stability of the nuclear envelope in adhered cells (Rowat et al.,
2008; Makhija et al., 2016). To quantify nuclear shape, we
measured common metrics including aspect ratio and circularity
C. We found that nuclei in fibroblasts isolated from DYT1
dystonia patients have a slightly larger aspect ratio than normal
fibroblast nuclei, indicating that they were more elongated
than nuclei in control fibroblasts (Figures 4A,B). Consistent
with this observation, we also found DYT1 dystonia patient-
derived fibroblasts have an increased cellular aspect ratio
compared to normal control fibroblasts (Figures 4A,C). We

further investigated nuclear circularity, C; this shape parameter
is sensitive to irregular shapes that deviate from a circle, as

C = 4π
Area

Perimeter2

with C = 1 for a perfect circle. However, we observed only
minor differences in nuclear circularity between DYT1 dystonia
patient-derived and normal fibroblasts (Figure 4D), consistent
with the slightly elongated nuclear shapes that we observed
in the fibroblasts isolated from DYT1 dystonia patients. Our
findings that the DYT1 dystonia-causing 1E mutation does not
have a major impact on nuclear shape contrasts the known
effects of reductions or mutations in A-type lamins (Rowat et al.,
2013; Harada et al., 2014; Reis-Sobreiro et al., 2018), which are
associated with nuclear blebbing, or lobulations, and tend to
markedly reduce nuclear circularity (Funkhouser et al., 2013;
Rowat et al., 2013; Reis-Sobreiro et al., 2018).

DYT1 Dystonia Patient-Derived
Fibroblasts Are More Susceptible to
Damage Following Mechanical Stretch
Than Control Fibroblasts
Nuclear lamins are critical for cell survival following exposure
to physical forces, suggesting that the mechanical stability

FIGURE 4 | DYT1 dystonia patient-derived fibroblasts and nuclei are slightly more elongated relative to controls but do not exhibit marked differences in shape.
(A) Representative brightfield and epifluorescence images of normal and DYT1 dystonia patient-derived fibroblasts and their nuclei. Nuclei were labeled with the
fluorescent DNA dye, Hoeschst 33342. Scale, 20 µm. Inset: scale, 10 µm. Quantification of (B) nuclear aspect ratio, (C) cellular aspect ratio, and (D) nuclear
circularity. Each data point represents the mean ± SD. Data were obtained from N > 30 cells across three independent experiments. Statistical significance was
determined using the Welch’s t-test. ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05; and not significant (NS) p > 0.05 is not indicated on these plots for clarity.
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of the nucleus imparts protection from external mechanical
stresses (Dahl et al., 2004; Denais et al., 2016; Raab et al.,
2016; Irianto et al., 2017; Chen et al., 2018; Kim et al., 2018).
Since fibroblasts isolated from DYT1 dystonia patients are more
deformable than controls, we next tested the hypothesis that
DYT1 dystonia patient-derived fibroblasts are more sensitive
to damage caused by externally applied mechanical forces. We
plated DYT1 dystonia patient-derived (GM03211 and GM02304)
and control (GM00023 and GM00024) fibroblasts on an elastic
collagen-coated PDMS membrane and subjected the resultant
membrane with adhered cells to uniaxial mechanical stretch (5%
strain). To quantify the magnitude of strain experienced by nuclei
in these fibroblasts, we acquired images of cells under static
and stretched conditions. We found that DYT1 dystonia patient-
derived fibroblasts exhibited slightly larger changes in nuclear
area (strain) relative to control fibroblasts in response to the same

magnitude of strain applied to their substrate (Figures 5A,B).
While the observed nuclear strain in GM02304 (N = 16) and
GM03211 (N = 17) DYT1 dystonia patient-derived fibroblasts
was only ∼9 and ∼3% larger than the control cells, these
differences were nonetheless significant as determined by Cohen’s
d test (d > 2). These observations of increased nuclear strain
are consistent with the DYT1 dystonia patient-derived fibroblast
nuclei being more deformable than nuclei in control fibroblasts.
Despite the requirement of torsinA for nuclear-cytoskeletal
coupling via the LINC complex in fibroblasts (Saunders et al.,
2017), our findings suggest that nuclei in fibroblasts isolated
from DYT1 dystonia patients are deforming more in response to
external mechanical stresses than control fibroblast nuclei.

Since the mechanical stability of the nucleus is critical
for cell survival following exposure to mechanical stresses
(Harada et al., 2014; Denais et al., 2016; Raab et al., 2016;

FIGURE 5 | DYT1 dystonia patient-derived fibroblasts exhibit increased nuclear strain and are more susceptible to damage than controls upon mechanical stretch.
(A) Representative images of normal and DYT1 dystonia patient-derived fibroblasts stained with Hoechst 33342. Nuclear morphology was examined after cells were
exposed to mechanical stretch (5% strain) for 5 min. Images show cells under stretched (Stretch) or non-stretched (Static) conditions. White arrows denotes the
direction of uniaxial stretch. Scale, 20 µm. The magnified inset shows overlapping outlines of nuclei from static (gray) and stretched (black) cells. Inset: scale, 1 µm.
(B) Quantification of nuclear strain (change in nuclear area) due to cell stretching N > 15 cells. Statistical significance was determined using the Welch’s t-test.
(C) Representative images of normal and DYT1 dystonia patient-derived fibroblasts after exposure to 24 h cyclical stretch (5% strain) and static conditions. Cells
were stained with Hoechst 33342 to visualize nuclei by epifluorescence microscopy. Scale, 20 µm. (D) Cell viability of normal and DYT1 dystonia patient-derived
fibroblasts after exposure to stretch for 24 h and static conditions. The viability data for stretched cells is normalized to static conditions for each cell line. N > 500
cells. (E) Quantification of the total protein content measured from biochemical lysates from cells that were adhered to the PDMS membranes after being exposed to
cyclic stretch for 24 h. Total protein content of stretched cells was normalized to the total protein content of cells under static conditions for each cell line. Each data
point represents the mean ± SD. Data were obtained from two independent experiments. Scale, 20 µm. Statistical significance was determined using Student’s
t-test. ∗∗∗p < 0.001; ∗p < 0.05; and NS p > 0.05 is not indicated on these plots for clarity.
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Irianto et al., 2017), we next determined the viability of DYT1
dystonia patient-derived (GM03211 and GM02304) and control
(GM00023 and GM00024) fibroblasts after repeated cycles of
stretch and relaxation at 0.5 Hz and 5% strain over 24 h.
Visual inspection of fibroblasts in stretched versus static samples
revealed major differences between fibroblasts isolated from
DYT1 dystonia patients compared to control fibroblasts after
24 h. In contrast to the aligned morphologies of the control
fibroblasts, which appeared similar in both stretched and static
samples, the stretched DYT1 dystonia patient-derived fibroblasts
were misaligned and exhibited irregular shapes (Figure 5C).
While there was variability in nuclear shape across these cell
lines in both static and stretched conditions, we confirmed that
there were no statistically significant differences in the variance
of nuclear shape across samples and independent biological
replicates (Supplementary Table 1).

To evaluate the effect of mechanical stretching on the viability
of the DYT1 dystonia patient-derived and control fibroblasts, we
acquired images of cells stained with the established live/dead
cell stain propidium iodide and used image analysis to quantify
the number of dead cells that remained adhered to the substrate.
While normal fibroblasts showed no significant cell death after
stretching, we observed a marked 57–62% reduction in the
viability of DYT1 dystonia patient-derived fibroblasts relative
to static control fibroblasts, indicating their reduced survival
following exposure to mechanical stresses (Figure 5D and
Supplementary Figure 2). Since the response of cells to stretch
depends on cell-substrate adhesions, we also assessed the number
of cells that remained adhered to the PDMS substrate after
stretching by quantifying the total protein content of cells lysed
from the PDMS membrane. We found a significant ∼17–58%
reduction in protein content for the stretched fibroblasts isolated
from DYT1 dystonia patients as compared to static control
fibroblasts, showing that there was significant detachment of
DYT1 dystonia patient-derived fibroblasts from the substrate
over the 24 h stretching period. By contrast, over 90% of
the control fibroblasts were adhered to the membrane after
24 h (Figure 5E). The increased detachment of DYT1 dystonia
patient-derived fibroblasts is consistent with a previous report of
altered integrin-mediated adhesion in these cells (Hewett et al.,
2006). Collectively, these findings indicate a striking difference
in the response of DYT1 dystonia patient-derived fibroblasts to
mechanical stretch.

DISCUSSION

Here, we show that DYT1 dystonia patient-derived fibroblasts
are characterized by defective cellular mechanobiology: they
have a more compliant mechanotype than fibroblasts isolated
from non-afflicted individuals. We substantiate this finding
by demonstrating that torsinA-null or torsinA1E-expressing
MEFs are more deformable than wild-type control fibroblasts.
Similarly, we show that MEFs lacking LAP1, SUN1, SUN2,
lamin A, or lamin B1, are more deformable that wild-
type controls. These findings are consistent with a model
where torsinA, LINC complexes, and LINC complex-associated

proteins each contribute to cellular deformability, which
is ultimately determined by a network of interconnected
cytoskeletal and nuclear proteins; consequently, the perturbation
of any nodes in this network structure, or “mechanome”, can
alter cellular mechanical properties (Rowat et al., 2006; Nakamura
et al., 2009; Swift et al., 2013). TorsinA, LAP1, SUN1, SUN2,
and lamin A/C are all critically important mediators of nuclear-
cytoskeletal coupling in fibroblasts (Folker et al., 2011; Luxton
et al., 2011; Saunders et al., 2017; Chang et al., 2019). Moreover,
LAP1 directly interacts with and stimulates the ATPase activity of
torsinA in vitro (Zhao et al., 2013) and the 1E mutation impairs
the ability of torsinA to interact with LAP1 (Naismith et al., 2009).
LAP1 also interacts with nuclear lamins and the inner nuclear
membrane protein emerin (Shin et al., 2014), which themselves
directly interact with LINC complex proteins (Kim et al., 2015).
Emerin was previously shown to be an important determinant
of cellular mechanotype (Rowat et al., 2006; Chang et al., 2014;
Reis-Sobreiro et al., 2018).

Our results also show that the expression of torsinA1E

is sufficient to impact cellular deformability: torsinA1E-
expressing NIH3T3 fibroblasts, torsinA-null (Tor1A−/−)
MEFs, heterozygous torsinA1E-knock-in (Tor1a+/1E) MEFs,
homozygous torsinA1E-knock-in (Tor1a1E/1E) MEFs, and
human fibroblasts isolated from DYT1 dystonia patients
heterozygous for the 1E mutation all exhibited increased
filtration relative to control cells. Since AAA+ proteins typically
function as homo-oligomeric molecular chaperones (Hanson
and Whiteheart, 2005), the mere presence of the 1E mutation
may inhibit the torsinA homo-oligomer by preventing contact
and/or communication between torsinA monomers, as suggested
by previous reports that show torsinA1E acts as a dominant
negative inhibitor of torsinA function (Hewett et al., 2000;
Kustedjo et al., 2000; Torres et al., 2004). However, it is important
to note that the DYT1 dystonia genotype is heterozygous for
the 1E mutation and only 30–40% of individuals who possess
this genotype develop dystonia (Ozelius et al., 1997). The low
penetrance of the 1E mutation is consistent with the fact
that heterozygous torsinA1E-knock-in mice do not exhibit
neuronal nuclear envelope blebbing nor perinatal lethality, as
observed in torsinA-null or homozygous torsinA1E-knock-in
mice (Goodchild et al., 2005). Thus, the 1E mutation may not
be a simple loss-of-function mutation, as previously suggested
(Cookson and Clarimon, 2005). Future work will determine
if the severity of change in filtration observed for a particular
DYT1 dystonia patient-derived fibroblast line correlates with
its performance in established assays for torsinA function, such
as centrosome orientation (Saunders et al., 2017), directional
cell migration (Nery et al., 2014), nuclear pore complex
biogenesis (Laudermilch et al., 2016), and protein secretion
(Hewett et al., 2006).

Here, we determined cellular deformability using the fluidic-
based methods PMF and q-DC. While we have generally
found good agreement between mechanotyping measurements
performed using PMF, q-DC, and the well-established atomic
force microscopy (AFM) (Kim et al., 2019), differences among
deformability measurements can emerge due to differences in
deformation time and length scales, as well as whether the
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cell was measured in a suspended or adhered state. In the
PMF filtration-based measurement of cell deformability, cells
in a suspended state flow through 10 µm pores over <1 min
timescales. Since fibroblast diameter typically ranges from 14 to
18 µm, this method probes the ability of whole cells to passively
deform on timescales faster than active cell migration. Major
contributors to cell deformability in this assay are cortical and
cytoplasmic components (e.g., actin), the nucleus (e.g., lamins),
and nuclear-cytoskeletal connectivity (e.g., LINC complexes and
their associated proteins), as we show here. Other flow-based
methods, such as q-DC, similarly probe the ability of cells
to deform through narrow gaps, albeit on faster deformation
timescales of 10 to 100 ms. By contrast, AFM measures cell
mechanical properties with much smaller deformations of nm
to µm on timescales of sec to min. For AFM measurements,
cells are typically adhered to a substrate; thus cortical stiffness
as well as cell spreading and intracellular tension may also
contribute to the measured cellular mechanotype. Future AFM
studies will provide further insights into the mechanotype of
adhered DYT1 dystonia patient-derived fibroblasts, including
precise measurements of cortical stiffness relative to control
fibroblasts. Using complementary mechanotyping methods to
probe cellular deformability across varying time and length
scales should also provide more detailed knowledge of the
origins of the altered stiffness of the DYT1 dystonia patient-
derived fibroblasts. For example, changes in nuclear physical
properties and cell cycle stage can both lead to altered whole
cell deformability (Kunda et al., 2008; Rowat et al., 2013;
Swift et al., 2013; Otto et al., 2015).

While torsinA is required for the assembly of functional actin-
and intermediate filament-binding LINC complexes (Nery et al.,
2008; Saunders et al., 2017), it is interesting to note that DYT1
dystonia patient-derived fibroblasts exhibit increased nuclear
strain following their exposure to mechanical stretch, suggesting
that there are still physical forces pulling on the nucleus during
stretch of the underlying substrate. The increased nuclear strain
observed in fibroblasts isolated from DYT1 dystonia patients
could be caused the nuclear envelope becoming more deformable
due to the loss of torsinA function; the loss of functional
LINC complexes could reduce the mechanical stability of the
nuclear envelope by decoupling the inner nuclear membrane
from the nuclear lamina and chromatin, which could lead to a
larger increase in nuclear envelope area for a given magnitude
of substrate stretch. The increased nuclear strain observed in
DYT1 dystonia patient-derived fibroblasts may additionally be
explained by the transmission of external forces to the nucleus
via LINC complexes that associate with microtubules (Alam
et al., 2014; Luxton and Starr, 2014; Chang et al., 2015b)
and/or intermediate filaments (Hewett et al., 2006; Nery et al.,
2014; Saunders et al., 2017). Physical forces could also be
transmitted from the substrate to nucleus independently of LINC
complexes. For example, nuclear pore complexes interact with
the cytoplasmic microtubule motor proteins dynein and kinesins
as well as nuclear lamins and chromatin (Yang et al., 2006;
Splinter et al., 2010, 2012; Al-Haboubi et al., 2011; Steinberg et al.,
2012). Future studies will test the relative contributions of specific
components such as microtubules and nuclear pore complexes

to the nuclear strain observed in mechanically stretched DYT1
dystonia patient-derived fibroblasts.

Given the role of torsinA and the LINC complex in
regulating nuclear architecture, altered gene expression may
be another potential mechanistic explanation for the altered
cellular mechanotype we observed in human and mouse
fibroblasts lacking torsinA function. While the expression of
torsinA1E in a cellular model of DYT1 dystonia was not
sufficient to cause transcriptional dysregulation, a more recent
unbiased transcriptomic analysis of embryonic brain tissue from
Tor1a+/1E and Tor1a1E/1E mice revealed some changes in
gene regulation (Beauvais et al., 2018). The role of altered gene
expression in regulating the mechanotype of cells lacking torsinA
function should thus be investigated. Furthermore, torsinA
has been implicated in lipid metabolism (Grillet et al., 2016)
and nuclear-cytoplasmic transport (Al-Haboubi et al., 2011;
Chalfant et al., 2019), both of which could also contribute to
cellular mechanotype.

We additionally discovered that the altered mechanotype
of DYT1 patient-derived fibroblasts is associated with their
decreased viability following mechanical stretch. These findings
are consistent with previous reports that reduced levels of lamin
A/C result in increased cell death following the migration of
cells through narrow gaps (Harada et al., 2014). The nuclear
rupture and DNA damage that results from mechanical stresses
also depend on lamin A/C expression levels (Denais et al., 2016;
Raab et al., 2016), substantiating that the mechanical stability of
the nuclear envelope is critical for cell survival. The decreased
viability of fibroblasts isolated from DYT1 dystonia patients could
similarly result from an increased frequency of nuclear rupture
and the accumulation of double stranded DNA breaks similar to
previous reports in fibroblasts as well as cancer and immune cells
(Denais et al., 2016; Raab et al., 2016). Alternatively, our findings
of the decreased viability of DYT1 patient-derived fibroblasts
following mechanical stretch might be explained by altered
biochemical signaling triggered by mechanical stimuli that result
in elevated levels of apoptosis (Jaalouk and Lammerding, 2009;
Chan et al., 2011; Zhang et al., 2011). Future studies will define the
mechanisms underlying the reduced survival of DYT1 dystonia
patient-derived fibroblasts in response to mechanical stimuli.

It is tempting to speculate how altered cellular mechanotype
may impact DYT1 dystonia pathogenesis. While our studies were
conducted in fibroblasts and DYT1 dystonia is a neurological
movement disorder (Fahn, 1988), molecular mediators of
mechanotype are generally conserved across cell types
(Rodriguez et al., 2003; Herrmann et al., 2007; Dittmer and
Misteli, 2011; Chung et al., 2013; Chang et al., 2015b; Xavier
et al., 2016; Fritz-Laylin et al., 2017). Thus, our findings of
altered mechanotype in human and mouse fibroblasts may also
be observed in neurons, which could have consequences for
DYT1 dystonia pathogenesis. Since mechanoregulating proteins
are often required for cellular functions that involve physical
force generation, such as motility and mechanosensing (Anselme
et al., 2018; Prahl and Odde, 2018), the impact of torsinA1E on
cellular mechanobiology could have deleterious consequences
during tissue morphogenesis (Heisenberg and Bellaiche, 2013;
Pizzolo et al., 2017). Indeed, previous studies showed that the
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migration of neurons in the dorsal forebrain of Tor1a−/− mouse
embryos in vivo (McCarthy et al., 2012) as well as the motility
of torsinA-null MEFs and DYT1 dystonia patient-derived
fibroblasts in vitro were impaired (Nery et al., 2008, 2014). Our
observations of the reduced survival of DYT1 dystonia patient-
derived fibroblasts following mechanical stretch incite further
studies into the ability of neurons expressing torsinA1E to sense
the mechanical properties of their environment. Like all cells,
neurons adapt their mechanotype by translating mechanical
stimuli from their environment into biochemical signals through
a process known as mechanotransduction (Franze et al.,
2013). During development, the brain exhibits evolving stiffness
gradients due to variations in the composition and architecture
of its extracellular matrix (Franze et al., 2013; Barnes et al.,
2017), which provide mechanical signals that instruct neuronal
differentiation, proliferation, and survival (Iwashita et al., 2014;
Koser et al., 2016). Thus, impaired mechanosensing of neurons
in the developing brain may contribute to the manifestation
of DYT1 dystonia.

More broadly, mutations in torsinA, LINC complex proteins,
and their interacting partners have been implicated in numerous
human diseases ranging from recessive neurological disorders
associated with developmental delays to cardiomyopathy and
muscular dystrophies (Luxton and Starr, 2014; Sewry and Goebel,
2014; Rebelo et al., 2015; Ghaoui et al., 2016; Janin et al.,
2017; Kariminejad et al., 2017; Reichert et al., 2017). Further
investigations of how torsinA and the LINC complex impact
cellular mechanobiology could result in a deeper mechanistic
understanding of human disease pathogenesis as well as the
potential discovery of novel therapeutic targets.
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